canari.component.periodic_component#
- class canari.component.periodic_component.Periodic(period: float, std_error: float | None = 0.0, mu_states: list[float] | None = None, var_states: list[float] | None = None)[source]#
Bases:
BaseComponent
Periodic class, inheriting from Canari’s BaseComponent. It models a cyclic behavior with a fixed period using a Fourrier-form harmonic. It has two hidden states.
- Parameters:
period (float) – Length of one full cycle of the periodic component (number of time steps).
std_error (Optional[float]) – Standard deviation of the process noise. Defaults to 0.0.
mu_states (Optional[list[float]]) – Initial mean of the hidden state. Defaults: initialized to zeros.
var_states (Optional[list[float]]) – Initial variance of the hidden state. Defaults: initialized to zeros.
Examples
>>> from canari.component import Periodic >>> # With known parameters and default mu_states and var_states >>> periodic = Periodic(std_error=0.1, period=52) >>> # With known mu_states and var_states >>> periodic = Periodic(mu_states=[0., 0.], var_states=[1., 1.], std_error=0.1, period=52) >>> periodic.states_name ['periodic 1', 'periodic 2'] >>> periodic.mu_states >>> periodic.var_states >>> periodic.transition_matrix >>> periodic.observation_matrix >>> periodic.process_noise_matrix
- initialize_process_noise_matrix()[source]#
Initialize the process noise covariance matrix. Output an 2D array.